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then Ui(exp. ) < Ui(calc. ). This case indicates that the experiments
D..,.
..,”.

show that cavitation inception is at a lower speed than that predicted
.h..
r‘r
t%

by the theoretical calculations and thus the prediction is non-conservative.

On the other hand, when

oi(exp) < fsi(calc.)

or Ui(exp) > Ui(calc.), the predicted values for cavitation

are conservative.

nception

Figure 16, which is a comparison of calculated and experimentally

observed cavitation index for the 3-bladed propeller 4132 (EAR = 0.3),

shows conservative predictions when J = 0.7 or design J, whereas the

predictions are non-conservat ive, somewhat at J = 0.6 and especially so

at J = 0.5, except near the hub and near the tip. In Figures 17 and 18,

for the 3-bladed propellers 4118 (EAR = 0.6) and 4133 (EAR = 1.2), respec-

tively, all predictions are on the conservative side except those for J = 0.5.

Judging from this set of calculations, the predicted values of

cavitation inception are on the conservative side compared with experi-

mental observations as long as AJ = Jd - Jod < 0.3. Nevertheless, the

discrepancies which exist between predicted values of the index of cavita-

tion inception and the experimental observations require investigation.

These observed discrepancies must not be solely attributed to the

lack of accuracy of the linearized theory when modified by the Van Dyke

correction. It is well known that visual determination of inception of

cavitation is dependent upon the subjective evaluation of the observer

and is highly dependent on the surface finish and accuracy of the model

in the immediate vicinity of the leading edge of the blades. The variant

patterns of the viscous flow at appreciable angles of attack can involve

laminar separation with vertical flow standing off the blade surface

giving extremely low pressures in the core of the vortex (as cited fre-

quently by Eisenberg, for example) and, hence, inception at o values

larger than the minimum pressure coefficient provided by inviscid theory

on the surface of the blade. Also, from the definitive measurements of

Huang and Hannan19, it can be conjectured that large pressure fluctuations

can occur on the blade surface at the reattachment zone abaft laminar

separation. In addition, it is never certain that observed inception

is attributed to truly vaporous cavitation or to the expansion of un-

dissolved air.
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The fact that the experimental o-values are generally higher than

the calculated ]Cp I at the maximum excursion in J (i.e., J=0.5, AJ =0.33)

suggests that the ‘?eal fluid effects alluded to above may be responsible.

However, at the larger J = 0.7 (smaller AJ = 0.13), the disagreement is

in the opposite direction except for the first propeller, EAR = 0.30,

where the agreement is fine. Here the fluid speeds are of the order of

twice as great as at J = 0.5 and the pressure peaks on the blades at re-

duced angle of attack, while lower in magnitude, are indeed sharper, i.e.,

the chordwise width of the pressure spike is reduced. One may speculate

that the passage time of nuclei through the region of low pressure is con-

siderably less at J = 0.7 than at J = 0.5 (higher

and that cavitation does not ensue until the rs va”

]Cp j.
m

The validity of the theoretical curves shou’

a rational method for finding the effective angle

speed, shorter extent)

ues are dropped below the

d be checked by employing

of attack, the effective

camber and the effective thickness of the two-dimensional section (to be

substituted for each bladesection) for which exact steady-state pressure

distributions have been computed. This is not a simple process as was

discovered when attempting to use the families of curves provided by

Brockett20 and a rule for finding the effective angle of attack attributed

to W. Morgan. The effective angle of attack was found to be too impre-

cise; a very small error produces a larger error in the C value.
Pm

Clearly, further studies of the pressure distribution at the leading

edge of propellers are necessary. The results obtained thus far should be

regarded as quite reasonable. Further work may require a precise mechan~

ization of the effective two-dimensional solutions using certain inputs

from the three-dimensional propeller flow field, and local sectional

loadings.
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COliCLUSION

In this study, a theoretical approach is evolved and a computational

procedure adaptable to a high-speed digital computer (CDC 6600 and 76oo)

is developed for evaluation of the linearized pressure distribution on

each side .of a marine propeller blade, with the objective to obtain suf-

ficient and reliable information for cavitation and blade stress analyses.

The essential information for the blade stress analysis is the anti-

symmetric part of the blade pressure distribution, attributed to the non-

uniform inflow (wake), blade camber, incident flow angle and nonplanar

thickness of the blade, all of which are associated with the lifting ac-

tion of the blade and contribute.to the hydrodynamic forces and moments

and blade bending moments. The symmetric part of the blade pressure dis-

tribution, attributed to the planar thickness and associated with the

non-lifting properties of the blade, contributes to the pressure dis-

tribution on each side of the blade, which is essential for the predic-

tion of cavitation inception.

In addition to the blade pressure distributions at each frequency,

the program furnishes the propeller-generated steady-state and time-

dependent hydrodynamic forces and moments and the blade bending moment

about the face-pitch line at the midpoint of any of the radial strips

into whi’ch the span is divided. The program also provides the instan-

taneous blade pressure due to

sures on suction and pressure

bending moments, as the prope

and torque due to friction is

drag coefficient; in the ever-t

loading alone and the instantaneous pres-

sides, as well as the instantaneous blade

ler swings around its shaft. The thrust

estimated by using an approximate frictional

of any improvement of the estimated fric-

tional coefficient, this portion of the program can be easily modified.

In applying the mode approach to the solution of the surface integral

equation, the analysis and the program are divided into two main parts,

one dealing with the steady-state flow case (q=O) and the other with the

unsteady flow condition. The steady-state case is subdivided into design

and off-design conditions. The selection of the proper chordwise modes

in the steady-state flow condition at design advance ratio J is dictated

by the shape of the loading distribution in two-dimensional flow on a

foil with the same camber distribution. At off-design J in the steady-
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state condition, there is an angle of attack due to the difference AJ

(between design and off-design advance ratio) and the additional load-

ing due to this angle of attack is represented by the cotangent term of

the Birnbaum modes. In the unsteady flow condition, the complete Birnbaum

modes are used.

The linearized unsteady lifting-surface theory requires the leading-

edge singularity arising from the cotangent term of the Birnbaum modes.

The “square-root” singularity is integrable, but its presence in the

pressure distributions is unrealistic and has been removed by employ

the Van Dyke-Lighthill correction factor.

A set of computations has been performed for the series of 3-b

blade

ng

aded

propellers for which experimental data were available from NSRDC tests in

open water and in the non-uniform inflows due to 3-cycle and 4-cycle screen

wakes. The calculated results for the hydrodynamic forces and moments,

steady and unsteady, compare well with the experimental values. There is

no experimental information on blade pressure distributions for this set

of propellers. However, the blade pressure distribution curves in the

steady-state case agree qual itatively with experimental curves 18shown by

Mavlyudov (USSR) for a different propeller model (NACA-16, ~=0.8 mean

line section, EAR= o.95) at 0.8 radius. In the absence of experimentally

measured blade pressure distributions for the propellers treated, a compar-

ison is made indirectly through the index of cavitation inception in uni-

form inflow. It is seen that the predicted values of Oi= /Cp ] are con-

servative except at the smallest off-design J=o.5 (largest m AJ=O.33).

The cavitation index !Cp I reflects the blade pressure in the neigh-

borhood of the leading edge an! this is dependent on the correction method

for removing the leading edge singularity of the theoretical distribution.

However, the observed discrepancies between theory and experiment cannot

be attributed solely to the lack of accuracy of the linearized theory when

modified by the Van Dyke correction. Experimental determination of the

inception of cavitation is dependent on the subjective evaluation of the

observer. It is also dependent on the surface finish and accuracy of the’

propeller model in the immediate vicinity of the leading edge of the blades

and on the undissolved air content of the fluid as well. There is a
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possibility that flow separation and vortex generation occur near the

leading edge and this i’s not taken into account by the theory. Further

studies, both theoretical and experimental, are necessary. The results

obtained thus far may be considered reasonable.
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FIG.2. DEFINITIONS OF ANGULAR MEASURES
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APPENDIX A

1. Evaluation of the rpa- and 9U- Integrals of the Integral Equation (19)
—

](’)(y) = ~ fn(1-COSC(I) eiycosqdq = JO(Y) - iJ,(y)
o

= ~ j’ (l+2coscp) ~ycosvd~ = J (y) + i2J, (y)1(2) (y) on
o

, b+) (y) = :
~ cos(;-l)cp eiyco’v d(p = i;-l Jm , (y)
o

where Jn(y) is the Bessel function of the first kind of order n and

argument y

2) A(n) (Z) = ~ @(;] e-izcoso sin R d6
o

a) Birnbaum distribution

A(’)(z) =: ~n cot f e ‘izcosesine de = J (z)
o

- iJ, (z)
o

A(;>l)(z) = : Insin(;-1)0 since ‘izcosg dO
o

=&@[J ; z(z) + J-(z)]
2-

n

b) “Roof-top” distribution (~ mean lines)

A(l)(Z) = f
Cos-’ (1-2;) -izco~o

e sine do
o

‘n

-1-J J.Li# e-i=so sin8 d8

Cos-’ (1-2:) -

-iz

{

;+
1

[
i2az i2z-= e

2(1-:)22 e
-e

0
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m(z) = 2 S:n z .)(For ;=I, A

A(;>l )(Z) = ()

c) Sine series distribution

sin nO sin Oe ‘izcoso dOf@(z) =+ J* -

0

= (-i);-’ ~
[ (z) + J~+,

2
(z)]

;-1

Il. Functions Reuui red for Evaluating the Inteqrandof the Kernel Function

at the Singularity (see Reference 3) and the Propeller-generated

Moments (see section A,4)

1) 1~)(y) =+ j’ni!(i) eiycosyCOS~ d~

o

“)(Y) = - ~ [Jo(y) - J2(Y)] + iJ, (y)
‘1

‘2) (y) = [JO(Y) -
‘1 J2(Y)] -I- iJ, (y)

.;-2
(i>2) (y] .*[-

‘1
J-(Y) + J_ (Y)]
m m-2

2) A~(z)=~@(;) sin~cos~e-izc0s8dB
o

a) Birnbaum distribution

A(l)(z) ‘~~o(z) - J2(z)1 -
1

iJ, (z)

4 ;>1) (z)=+! J[ (z) - JE+, (z)]
;-3

b) “Roof-top distribution (~ mean lines)

A\’)(z) =e-iz ‘~+*+z2(~-=) [+-j) ei2az

‘ (-i+:)~2zll
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(For ~ = 1, Al’)(z) =;(COS Z-*).)

A-3

c) Sine series distribution

$)(=) =@[J (2)-J ;+2(=)]
;-2

It is to be noted that the values for negative argument, i.e. ,

(fi)(-y), A1 (i) (-y), 1, ‘E) (-z) , are the conjugates of the‘E) (-z) and A,

values given above.
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APPENDIX C

RESOLUTIOiY OF FORCES AND MOMEITS

With the present coordinate system and sign convention (see

Figures 1 to 3)

velocity -Q, is

F(x,y,z) =

where in cylindr

the propeller, its N blades rotating with angular

assmed to lie on a helicoidal surface given by

cal coordinates

x = cpo/a

Y = -r sin8

z =rcose

O=qo’-flt+?j
n

The unit normal to this surface has components

Fx, F , Fz
1, z/ar2, -v/a r2

n =

i ?X+FY+F
2 2

z = C/ar

so that ‘X=m “Os’
z/r

‘Y =
d

= sin @ cose
1 +a2r2

Y/r

‘Z’* ‘Sin psine

-1 1
where P =tan~, the hydrodynamic pitch angle.

(c-1)

(c-2)
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The elemental forces are then

AFX = Ap COS f) As

AF = AP sin ~ cos(flt-cpo-~n) AS
Y

AFZ = - Ap sin 6 sin(flt-cpo-9n) AS

The elemental mcments can be expressed as

ijk
A
AQ = Xyz (Ap) (A S)

n
x ‘Y ‘z

(c-3)

(c-4)

so that

AQ =AP(ynz - zny) AS = - AP rsin~AS
x

AQY= - AP(xnz-znx) AS

= AP”r [q. tanB sin~ sin(~t-qo -;n) + COS~ cos(~t-qo-;n)] AS

AQZ = AP(xn
Y

- ynx) AS

[
= AP-r qotanp sinfl cos(ftt-~o-~n) - cos~ sin(~t-~o-~n)] AS

The total force in the x-direction (thrust) is

N iq(~t-~n)

Jf AP(q) (r,cpo) cos~(r) dSFx = ReZe
n= 1 s

L(q) (r,qa) = AP(q)(r,cpo) r e;

N +iq~n

{

N for q = AN, 4=0,1, 2,...
and Z e =

n=l O otherwise

c-2
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r-
TT

i lKlt
JJ L(~N)(r,qu)cos p(r) sinqa dqu doFx= ~ReNe

Or

n (~N)(r,qu) sin~adcpa=
But ~ L L(LN) (r) the spanwise loading

o

therefore

1 L(LN) (r) cos~(r) dr,Fx= fRe \Nro e
i 2NQt

J 1
0

The total force in the y-direction is

N iq(flt-~n)
F =Re Ze JJ AF’(q)(r,qo)sin D(r) cos(flt-cpo-~n) dS

Y n= 1 s

‘~= Re X ~ ~n~
[

L(q) (r,q )sin ~(r) e i(q+l)(Qt-6n)e ‘O;
COSC+2U

0!
n=l or

+ ei(q-l)(ot-~n) -ie~ COSyI

1
a.

e sin qadqadr

(c-5)

(c-6)
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8

l%erefore

F =
Y

Fz =

. sin ~(r) dr
}

The vertical force is

{

N iq(~t-~n)
ReZe ~ ~ Ap(q) (r,qo) sin13(r) sin(~t-vo-;n) ds}

‘n=l s

and following the steps indicated in the development for F , the force
Y

is finally

~-Nro i,tNi2t 1 (4N-1 ,~) (;) (4N,+1 ,;) (;)
F’—

= ‘e12i e J ng, [L
(r) A (-f3~) - L (r) A (e;)]

z
o

“ sin ~(r) dr
}

‘The moment about the x-axis (torque) is

iq(Qt-6n), (q)
Qx = Re{-!$e H

AP (r,cpo) sin~(r) r dS}
n=l s

and by analogy with Fx this becomes

{

ijNLlt 1 (lN)

Qx = Re ,- Nr~e J L (r) sinf3(r) r dr
}

o

The bending moment about the y-axis is

(c-8)

(c-9)

Qy = -(
N iq(Qt-6n)

ff AP(q)(r,cpo)[rqIo tanf3(r) sin13(r) sin(~t-yo-~n)ReZe
n=l s

+ r cosp(r) cos (~t-cpo-~n) 1 dS}

which with the trigonometric transformations employed before becomes
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sincpa d~a} “ r drl>

The first qa-integral is

(c-lo)

A(n) ( ) is as defined in Appendix A.where , The second qu-integral

is given by (c-6). Finally,

,Nr~ iLNClt 1 (4 N-1 ,;)
Qy = ReLy e JI 6) @-)~i9L ~ sinp(r) tanp(r) ~~, [L (r) L,

o

(4N+1 ,ii) (jN-l ,;) (;)

(;) (9;)] + cosB(r) ;~,[L-L (r) A, (r)A (-e:)

(4N+1 ,~) (;)

-I-L (r) A (f3~)~: r dr (C-n)
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The bending moment about the z-axis is

iq(Clt-6n)
AP(q)(r,q30)[rcpo tan~(r) sinp(r) cos(nt-qo-~n)=Re ZeQz {nN, JJ=

- r cosp(r) sin(flt-cpo-~n)] ds }

It can be shown that

2 i,k3NQt 1 (4 N-I ,~) (;)

Qz=Re{>e f{ i6 ~ sinp(r) tanp(r) -X ~ (r) A, (-e;)

o n=l

(4N+1 ,;) (;) (4N-1 ,;) (;)

-I-L (r) A, (8~)]+cos13 (r) n~, k
(r) A (-9;)

-L ‘LN+’’;) (r) A(;)(9~)]} ~>“rdr (C-12)

In the text, and in the program as well, the hydrodynamic pitch

angle ~(r) of the assuned helicoidal surface is replaced by the geometric

pitch angle Op(r) of the actual propeller.
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APPENDIX D

8 THE SINGULARITIES OF THE INTEGRANDS OF THE

BLADE PRESSURE DISTRIBUTION

1 In Equation (49) for the pressure due to thickness (non-lifting)

it is seen that there is a singularity when p = r, x = 5, 00 = V. and

R
Gn = O(i.e. ,n=l). The singular part of the pressure can be expressed

as (see Eq. (53) with the substitutions “CIo= a~ and To = ax) :

I p- =
“’1

+

whe re

pfua m af(p,eu)

i 2*2 M ae
N/m { fm k(lK) eik(x-s) dk

‘. o
OP a -CJ

; f (,K) [(k-am)ei(k-am)(x-$)+ (k+am)ei(k+am)(X-g)] dk ~~udp

m=1 -f= m

(D-1)

For arbitrary thickness (see Eq. (32)) .

af(p, OU) ‘a 4

a9
N co(p) Cos ~+ Z Cn(p) sin nOa

CY n=l

the coefficients are obtained as shown insect.A,3,c. Then the trigo-

yields

L&.&l_Cose =co:+=+



R- 1869

2a(crp-a~)d~
sin 262 dO = 2sin8u COS9Q dea =

CY
(e:)2

[
(op -aq)’ & dg

sin 36 de = -1+4
CYCY 1(e:)’ 8/

sin 4f3 = [(
8’&%\3 . 4~k

a )]~bP j {Qp$d~
b b

and thus the slope can be expressed in the following form:

~ (P@d~aG{[do(P) +~dl(p) - d2(p)g+ d3(p)?+ d4(p)?2+d5(p)S3]d?
CY

m
Equation (D-1) can be written as

P ‘~ ~~F(5,p){~rnk(lK)o eik(x-<)dk
‘1 2-n

<P -m

+ ~ ~m (lK)m [(k-am) ei(k-am) (x-%) +(k+am)e i(k+am) (x-~)] dk~- d~dp
m=l -~ ;

(D-2)

For finite m the expansion of l/R in the above has no singularity. R

The singular behavior is present only in the infinite m-series (see Ref-

erence 10). When m 2 M large, the generalized mean value theorem can be
I

used:

j’df(k)p(k)dk= d
R

f(A) ~ p(k) dk, C ~ A< d
c c

i
where f(k) = Im(lklp) Km(lklr) for p < r

.Im(lklr) Km(lklp) for r< p R

1

I
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and f(A) = lm(i Alp) Km(l Air), etc. with A <<m (order).

By using Nicholson’s
(11)

approximation for the product of the modified

Bessel functions when A c <m

f(A) ~~ Zm where z’ =

{

p/r for p<r

r/p for” r<p

Then for large m the integral can be written as

From Jolleyls collection of series summations (12)

ia ; Zm sin ma(x-~) =
m=]

&
Also ~z

~lm - Z cos ma(x-5)
m=l m

The re fo re

m

z L Z’” cos ma(x-s) = J
m

m=l

=-

iaZ sin a(x-~)
~ (see Jolley 499)

1-2Z cos a(x-~)+Z

(D-3)

+m~,Zm cos ma(x-g)
=

cos a(x-?) -z
~ (see Jolley 500)

1-2Z cos a(x-~)+z

(D-4)

cos a(x-?) -z
dz

1-2Z cos a(x-Fj)+Z2

: log [1 - 2Z COS a(x-$)+Z2]

The m-series of (D-4) then is equivalent to
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Sm =
i
c-~ log [1-2zcosa(x-~)+Z2] ~m ke

ik(x-~)dk

-m

w

+
iaZsin a x-~

J
eik(x-g) dk’i

1-2 Zcos a(x-~)+Z2 ‘m
.1

M
- X ~ Z“’ {COS am(x-~) ~m k eik(x-g) dk

m=l -m

+ i am sin am(x-~) J“” eik(x-~)dk] (D-5)

-w

where the finite m-series can be ignored since it is certainly not singular.

The k-integrals are evaluated as

m

J ik(x-?)dk
e = 2’n 6(X-$)

-al (D-6)

where fi(x-?) is the Dirac delta function and 61(x-3) the derivative of this”

function with respect to (x-~).

With the substitution of (D-5) and (D-6) and letting X. = x - ~,

Equation (D-4) becomes

1 = i2TI J’ ~ F(X-XO,P) {- ~ log (1-2z cos axo+Z2) 8’(xO)
x

Op
aZ sin ax

o
~(xo)} dxo dp (D-7)

1-2Z cos axo+Z2

and integrating over X. results in

aF(x-xo)P)
I = +ill f Iax. XO=O

log (1-2Z+Z2) dp

P

(D-8)
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APPENDIX E

EVALUATION OF THE F)-IflTEGRATION IN

THE REGION OF THE SINGULARITY (SECTION B)

Let l?(p) represent the integrand of the p-integration. It has been

seen that when p- r, ~(p) varies as An(p-r). A logarithmic singularity

is integrable, but since the integration is performed numerically, special

precautions must be taken. In

integral is put in the form

‘+9 M(P)
I =

J — dp
p-r

r-~

where M(p) = (p-r) k(p) so that

The function M(p) can be

by the Lagrange formula

the region of the singularity p = r, the

M =Owhenp=

expanded about

~n(P)
M(p) = ;

i=o ‘p-pi) ll~(pi) ‘i+l i ‘O>

(E-1)

r, and ~ = Ar/2.

the singularity p = r

1 . . . . . n (E-2)

whe re

nn (p) = (P-po) (P-p, ) . . ..(p-pn)

‘~(Pi) =$ IIn(p) evaluated at P = pi

and M. = M(pi) (see Scarborough (13)
and Watkins et al (14)).

1+1

In the strip from r - p to r + @ (with n = 4 for the 5-point

formula), p. = r - B = r - 2.8, p, = r - 6, etc. where 6 = 6/2” Then

‘~(pi)
4-i 4= (-1) . #6 il (4-i)l (E-3)

and

M(p) =— ; & ‘R-r+2fi) (p-r+6) (p-r) (p-r-6 )(p-r-26) M
;4 i=o il (4-1)1 P - r + (2-i)ti i-i-l

. .

(E-4)
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I

whe re M = O since p2 = r.
3

8
The integral is

rjz~ m ~p . L ‘+28,4 f [go(p-r)3+6g, (p-r)2+62g2(p-r)+63g3+ ~]dp
a

I =
r 26 (p-r)

r-26

(E-5)
1

whe re
1

M2 + M4
p- +!!3

90 = 31 .21
I

2 (M -M, ) (M4 - M2)

91 = 41 - 31 B

-(M, +M ) 4(M2 + M4) 5M3

92 =
(E-6) B4, 5 + 31 - 2!2!

. .

2(M, - M5) 4(M2 - M4) I

93= 41 - 31
.

9

94 =+ M3(M =0)
3. .

B

1 (8%
then I = — ~-~4.3

2(28)3 + 6393 2(26)
n

.:9, -1-4g
3 D

or I S* (M5-M, ) +: (M4-M2) (E-7)
I

where M,=- 13 K,(p=r ‘!3) E

J2i (p= r-~)
‘2=-22

=+~~4(p=r+~) u
‘4

‘5
=+~~5(p=r+P)

I

B
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